A Soft Methodology for On-Chip Multiprocessor
Design

Alejandro Matute!, Marcos de Alba', and Elias Mizan?

! Tecnologico de Monterrey, Departamento de Ciencias Computacionales
Atizapan, Estado de México, México 52926
{A00464063, marcos.de.alba)@itesm.mx
2 The University of Texas at Austin, Electrical and Computer Engincering Department
Austin, TX 78751
emizan@ece.utexas.edu

Abstract. We propose a software methodology towards the design of on-chip
multiprocessors at the architecture level. This methodology will be helpful to
explore multiprocessor characteristics like reliability, security, redundancy and
soft-error detection and correction, among others. The technique proposed pro-
vides a clean design without loss of functionality or performance. One of its
advantages is that it is scalable for the design of on-chip multiprocessors with
up to n cores. We explain its application with two architecture organizations. In
the first, two or more CPU cores are synchronized by executing their own ap-
plications in bulks of the same number of instructions at each core. In the sec-
ond, CPU cores execute applications performi* ¢ as many instructions as possi-
ble without synchronizing.

1 Introduction

The design and implementation of fully-reliable synchronization strategies between
microprocessor cores is an important requirement in multiprocessor design. Architect-
level simulation is one of the initial steps for multiprocessor design it provides flexi-
bility for fast update of processor components in software, specding up the evaluation
of ideas allowing architects to explore the design space. The lack of correct multi-
processor simulators can cause misleading communication between CPU cores, af-
fecting performance, functionality that can lead to wrong conclusions.

In the design of a superscalar microprocessor a simulator like [1] is very helpful
for exploring its design space. To design the architecture of an on-chip multiproces-
sor we utilize a uniprocessor simulator and make modifications to it. There are differ-
ent ways to accomplish this; we believe that the methodology we propose is the more
natural and efficient regarding programming and functionality. This suggests replicat-
ing simulated superscalar microprocessors through multiple operating system level
processes. This means that the entire operating system context of a superscalar mi-
croprocessor simulation is replicated, so that any multiprocessor architecture can be
designed by multiple replicated uniprocessors.

A Soft Methodology for On-Chip Multiprocessor ...

To provide communication among different uniprocessors, or CPU cores for sim-
plicity, we dcfine shared variables. For example, a four-core symmetric multiproces-
sor, SMP, can be designed generating four identical OS-level processes of the uni-
processor simulator and defining a set of shared variables that represent shared hard-
ware resources among the CPU cores, like a level-two unified cache. To explore
replacement and writing policics on shared resources it is proposcd the definition of
programming subroutines which parameters include shared resources. These are im-
plemented straightforward using OS mutual exclusion techniques.

In this work we define two multiprocessor architecture schemes. In the first, N in-
structions are executed at each CPU core, to assure this a synchronization mechanism
is defined. In the second, every core executes freely, that is, without having to syn-
chronize.

2 Related Work

There has becn a great amount of multiprocessor design research during the last dec-
ades. Multiprocessors were originally built by interconnecting several compulers or
by interconnecting several CPU cores. More recently, due to the large increase on
transistor density researchers have integrated two or more CPU cores on a single chip
to provide higher performance, more reliability and better power efficiency.

To explore multiprocessor design, there have been proposed different strategics,
including: Theoretical approaches, interconnected-CPU multiprocessors, chip multi-
processors, simulators and emulators.

Since the focus of this work is the description of a softiware methodology for mul-
tiprocessor design, we do not discuss hardware-based multiprocessor approaches.

There are available multiprocessor simulators like [3-6). However, they are tar-
geted for designing off-chip multiprocessors. In [11] it is mentioned an architecture
level multiprocessor simulator, but it is not available and no further information can
be obtained. Thus, we decided to concentrate on the architectural design of on-chip
multiprocessors developing our own simulation infrastructure using [11] as a base-
line.

As described in [2], we are exploring techniques to improve the design of on-chip
multiprocessors and we have utilized the methodology explained in this paper as the
main baseline simulation technique to explore multiprocessor characteristics like
reliability, security, redundancy and sofi-error detection and correction, among oth-
ers.

The rest of the paper is organized as follows. In Section 2 we bricfly explain the
two previously defined simulation schemes for a multiprocessor system and the dis-
advantages of its loop-bascd solution. In Section 3 we describe their software imple-
mentation and in Section 4 we close with some results that validate our methodology.

25

3

Alejandro Matute, Marcos de Alba and Elias Mizan

Multiprocessor Schemes

The multiprocessor schemes we propose are described next.

3.1 Free running

n microprocessor cores run in parallel different applications. They exccute differ-
ent kinds of instructions and share input/output modules. Synchronization is re-
quired 3for a shared memory organization. A simulation of this scheme provides
fast response, which is suitable for performance or throughput studies on a multj-
processor design. An example of a dual-core multiprocessor with this scheme is
shown on Figure 1.

3.2 N instructions per core

n microprocessor cores run the same application in parallel. In this scheme, every
core executes the same instructions in chunks of N. That is, at the beginning of an
executed simulation in a dual-core multiprocessor, core 0 exccutes the first N in-
structions, and then core 1 executes the first N instructions. After this, core 0 exe-
cutes the next N instructions of the application and core 1 the same next N in-
structions. Later on, core 0 will execute the third set of N instructions of the pro-
gram and so on. The purpose of this scheme is to replicate the execution on a
given number of cores; this organization is very helpful for investigating reliable
MmiCroprocessors.

The intention of replicating code execution is to catch up when an execution er-
ror occurs on the leading core and being capable of detecting it on the trailing core
to correct the execution of the leading core. Figure 2 represents an organization
with this scheme.

Microprocessor Core #1 Microprocessor Core #2

Ly e o i weye]]

| System bus

RAM

Fig. 1. Free running multiprocessor scheme. N microprocessor cores execute si-
multaneously without synchronizing

26

A Soft Methodology for On-Chip Multiprocessor ...

Microprocessor Core #1 Microprocessor Core #2

s ey, S | i -5 T e e &
F] D i] |‘wa u: [+ 1 | F I) :] LwB

I s " l B r s 5 e 3
1 Checker b
— "

O siscsibiies SS— i

| -

— O

System bus

RAM

Fig. 2 N instructions per core scheme. The same program is executed by two
microprocessor cores each executing the same chunks of N instructions

3.3 Loop-based scheme

Another scheme to provide a multiprocessor simulation environment is to replicate

the uniprocessor resources by declaring arrays instead of single variables. However,

comparing this approach with the previous two we noticed the same result would be

produced without modifying all source code files. Therefore, maintainability and

functionability would be improved. We also decide not to use this approach to kecp
_ instruction-level execution synchronization control on cores.

4 Software Implementation of Multiprocessor Schemes

In this section we discuss how we implemented the multiprocessor schemes on a base
superscalar microprocessor simulator to produce a rcliable simulator for on-chip
multiprocessors. Our goal is to demonstrate that this is an casy-to-adapt architecture-
independent mechanism for any uniprocessor simulator which provides a more scal-
able and flexible architecture level analysis of uniprocessor dctails (like bus traffic,
cache sizes or registers characteristics), unlike other multiprocessor simulators that
focus their analysis details on the inter-processor communication. We also believe
this approach could be considered as a good option when other multiprocessor simu-
lators like SimpleScalar Multiprocessor Simulator arce found to be not available.

The operating system we use is Linux. The base simulator has a binary file that is
assigned to an operating system process. By replicating the running process of the
simulator [1] at the beginning of the simulation, two or more microprocessor cores
would be casily emulated with very few changes in the original code. The proposed
methodology consists on generating multiple processes of the same executable
through fork() calls to the operating system.

The simplicity of this implementation keeps the functionality and performance of
the simulator and provides a scalable solution. By just making n calls to fork() n CPU
cores will be running the same application.

27

Alejandro Matute, Marcos de Alba and Elias Mizan

4.1 Free running implementation

The free running implementation requires no synchronization, since every core exe.
cutes instructions freecly. A shared memory implementation of this scheme woulg
require declaring shared memory variables and the addition of cache coherence pro-
tocols like [7] or [8]. Our initial approach was to initially explore a non-shared mem.

ory multiprocessor organization.

4.2 N instructions per core implementation

A more common multiprocessor organization has shared memory among the avail-
able CPU cores. To implement this scheme on the simulator we designed the sema-
phores described in [9] in order to synchronize the cores and declared shared vari-
ables that represent shared hardware resources. With additional shared memory this
type of organization can be used to model on-chip multiprocessors with soft-error
detection and recovery techniques.

The semaphores provide a source to block a microprocessor core until the next one
completes a given set of instructions.

Assuming a multiprocessor with two cores, the use of a single semaphore can con-
trol their execution, the sofiware implementation of this synchronization scheme is
represented in Figure 3.

In Figure 3 the block named Code #1 represents the instructions to be executed by
the core 1. The block Code #2 represents the instructions to be executed by the core
2. The execution of Code #2 depends on whether core 1 has completed executing
Code #1; if it has not, then core 2 will be stalled until core 1 completes its work.
Similarly, Code #1 depends on the execution of Code #2 on the next round.

To synchronize multiprocessor cores at the instruction level, we set the control
barricr before the commit stage of the pipeline in each core. The code fragment
shown on Figure 4 demonstrates this idea on software.

Blocking.

Releasing..

Fig. 3 Semaphore-based synchronization mechanism

28

A Soft Methodology for On-Chip Multiprocessor ...

//instruction pipeline
begin

if (pid == MICRO_0) P(SEMO);
else P(SEM1);
instr_commit () ;

if (pid == MICRO_1) V(SEMO);
else V(SEM1);

iﬁ;tr_issue();

end

Fig. 4 Software implementation of a synchronized pipeline

Notice that the previous code could also be implemented by replacing the condi-
tional sentences by a hash table to store semaphore IDs and using every CPU core ID
as the key to access the table, providing a scalable scheme up to n microprocessor
cores.

A hardware implementation of a synchronized pipeline would look like that shown
in Figure §.

Write
Back

Reorder
Buffer

Fetch
Buffer

Wait

Go

Fig. 5 Hardware implementation of a synchronized pipeline

On Figure 5, the semaphore acts like a double pole switch. On the GO position the
pipeline allows the flow of data from commit to fetch. On the STOP/WAIT position
the pipeline is stalled until the controlling core executes its corresponding set of in-
structions. This synchronizing mechanism allows multiple cores to work coordinated.

29

Alcjandro Matute, Marcos de Alba and Elias Mizan

5 Experimentation and Results

To validate our methodology we executed simulations with a subset of SPECint2000
on our multiprocessor simulator derived from the superscalar microprocessor simula-

tor [1]. For all the benchmarks listed in Table 1 we simulated 100 million instruc-
tions.

Table 1. Benchmarks and dataset inputs used for simulations

" Benchmark Input Benchmark Inpute
—_fiz_ii)i o lnput.gra—phic vpr net.in, arch.in, place.in
Gcee _-j ___integrate.i h___— craftyﬂ- 7 crafty.in _ e
Gzip Inputgraphic gap refin o

parser refin _ “mef inp.in -

twolf ref perlbmk perfect.pl

We first simulated a superscalar uniprocessor, which characteristics are listed on
Table 2. These characteristics are similar to those found in a modern microprocessor
like [10]. Then, we simulated a dual-core multiprocessor to verify its correctness.

Table 2. Configuration characteristics of superscalar microprocessor

e Component Config. Component _ Config._____
Fetch width 4 L1 D-cache 16KB. 4-way
Branch prediction }hiss_yich_dlii_--a'vcv)n'-clcs_“—.l;'i D-cache 256KB, 4-way o
Branch predictor access time _——lc_ycle_ “I-Cache 16KB, direct
Branch predictor type Bimodal Mem. Latencies 18. 2 (cycles)
Branch prediction table size 2048 Bus width 8)
Two-level branch prediction 1102480 I-TLB 4KB o
table conf.) — o
Call/return stack size 8 D-TLB 4KB
'BTB size and associativity 512 4 TLB miss penalty 30 cycles T
Dispatch width 4 7 IntALUs 4
Issue witdth 4 Int Multipliers 1
Write back width Memory ports 2
Instruction window size 16 FP ALUs 4
"Load/store window size '8 T FP Multipliers |)

30

A Soft Methodology for On-Chip Multiprocessor ...

The results of the simulations are shown in Figures 6 to 9. Figurc 6 shows the performance rate
of the uniprocessor as the number of committed instructions per clock cycle (IPC). Figure 7
shows the miss rate of the first level data cache on the bascline superscalar uniprocessor. The
miss rate is defined as the ratio of number of misses among all the requests to the first level
data cache. Figure 8 shows the performance rate of each processor core on the on-chip
multiprocessor. Figure 9 shows the miss rate of each of the first level data caches in the
multiprocessor. As can be seen the results on Figure 6 and 8 are identical as those in Figures 7
and 9. As expected, our results were equal, because the characteristics in the core processors
are equal to those of the uniprocessor and each core in the multiprocessor executes the same
benchmark. We are assuming idcal inter-core communication conditions. A communication
model with no ideal conditions would impact in the multiprocessor’s performance. However,
the miss rate of the first level data cache would not be affected, because we have defined a first
level data cache per core. We are aware of the fact that considering a shared second level data
cache would impact the first level data cache miss rate, so we will explore this in future work.
As stated above, the purpose of this multiprocessor configuration is to provide execution
redundancy in order to achieve multiprocessor characteristics like reliability. security,
redundancy and soft-crror detection and correction using this methodology as the main baseline
simulation tool used in [2].

'l Uniprocessor Simulation Results
‘ \
l 25 l" T
i 2 - —— ———— e e—— e —————— e
i 8 !
I §15 4y ——— 4 ——— - - -
I E l
IR B : -
i g |
P % oos I [I & I 4
) !
! 0 i- - b . e = = — :
| " Q 3 \ X N
x 3 Q o Q'
§ & & & & F S f“
I :
: Benchmark :
|
i

Fig. 6 Performance results of superscalar microprocessor (number of committed instruc-
tions per clock cycle)

31

Alejandro Matute, Marcos de Alba and Elias Mizan

.
Uniprocessor Simulation Results
3
2 4
8 35
= 31+—
2 25
?
S 2
8 1.5 f—— -
[,
a 1 — —_—
o=l —in =0l
é 0 t - *—-ﬁ——r— e s -
7]
e R S)) : o 23 NN &
'o"’\Q &5 & of? °},Q @o &@0 $°<° ep K\
&
Benchmark

Fig. 7. First level data cache miss rate (%) results of superscalar microprocessor (ratio of
misses among all the requests to the first level data cache)

Multiprocessor Simulation Results

Performance
o -
O 0 a4 o»n
5 TN (- 4
|
i ! 3
4 . :
1 : I i
4 | : i
4 i !

Ky 8 < NS
$° &Q— R R & 8"6\
AR
Benchmark

Fig. 8 Performance results of cores in dual-microprocessor (number of committed in-
structions per clock cycle)

32

A Soft Methodology for On-Chip Multiprocessor ...

e -
Multiprocessor Simulation Results i
P i
- p— S — |
8 35 I
E o3{— e |
(-]
£ 25 Frpensaipry
E‘; 9 lcore1|é
s st—f{—1f]—] 'mcore 2]
SRR P & — Y 4 . |
pi-u—do=—Oun
f'.: 04— el bl Bl mm 0 hed Ad hd {
@]
s LIRS S S Y - B - S) » E
g & & ¢ & & & & |
i
Benchmark ,
|

Fig. 9 First level data cache miss rate (%) results of dual-core multiprocessor (ratio of
misses among all the requests to the first level data cache)

6 Conclusions and Future Work

We have proposed a methodology for on-chip multiprocessor design using a uniproc-
essor simulator as a baseline and operating system process replication functions along
with shared memory variables. Our methodology is simple and useful to explore new
architectural ideas for on-chip multiprocessors. We demonstrated that the multiproc-
essor simulator provides the same results as the uniprocessor simulator, but on multi-
ple processor cores under ideal inter-core communication conditions, which is a very
useful technique for investigating soft-error detection and correction as well as for
exploring fault-tolerant multiprocessors.

The next step in our research is to investigate shared resources in hardware and to
evaluate new sharing policies among them.

As shown in [2], we have also proved a technique for the design of fault-toleratn
on-chip multiprocessors and we have found this methodology very useful. It has
allowed us to explore multiprocessor characteristics like reliability, security, redun-
dancy and soft-error detection and correction.

33

Alcjandro Matute, Marcos de Alba and Elias Mizan

7 References

[1] Larson E., Chatlgrjce, S., Austin, T. MASE: A Novel Infrastructure for Detailed Microar-
chitectural Modeling. On ISPASS 2001. Tucson, Arizona.

[2] Mizan, E. and de Alba, M “Fault-Tolerant CMP Design Using a Write Cache Checker”, on
DSN 2005 The International Conference on Dependable Systems and Networks™. Yoko-
hama, Japan. July 2005.

[3] Pai, V.S, Rapganalhan. P. and Adve, S. RSIM: Rice Simulator for ILP Multiprocessors.
http://sofilib.rice.eduw/rsim.html

[4] MatlofT, N., Rich, K. Mulsim: Multiprocessor Simulator.
http://heather.cs.ucdavis.edu/~matloff/MulSim/MulSimDoc. html

51 Sunada. D.. Glasco, D. and Flynn M. ABSS: SPARC multiprocessor simulator. In proceed-
ings of the 8th Workshop on Synthesis and System Integration of Mixed Technologies
(SASIMI '98).

[6] Chen, X. Hong, J. Gao, Y. Li, X. Zheng, S. Design and Implementation of Multi-
processor Simulator Simdsm, Minimicro Systems, Shenyang, 2000. Vol. 21; Part
2, pp. 186-189.

[7] Archlbald. J. and Baer, J.L. Cache Coherence Protocols: Evaluation using a Mul-
tiprocessor Model, ACM, Trans. On Computer Systems 4:4, 1986, (November),
pp. 273-298.

(8] ;‘\garwal, A., Simoni, R., Hennesy. J., Horowitz, M. An Evaluation of Directory
chemcs for Cache Coherence, In Proc. Of the 15" ISCA, June 1998, pp. 280-
289.

[9] Gémez, C., R. Memoria compartida, seméforos y colas de mensajes. Tecnolégico
de Monterrey, 2002, pp. 16.

[10]JH intop, Glenn (et. al.). The Microarchitecture of Pentium® 4 Processor.

[11] The Simplescalar Web Site. http://www.simplescalar.com.

34

